510 research outputs found

    Gaussian Belief with dynamic data and in dynamic network

    Full text link
    In this paper we analyse Belief Propagation over a Gaussian model in a dynamic environment. Recently, this has been proposed as a method to average local measurement values by a distributed protocol ("Consensus Propagation", Moallemi & Van Roy, 2006), where the average is available for read-out at every single node. In the case that the underlying network is constant but the values to be averaged fluctuate ("dynamic data"), convergence and accuracy are determined by the spectral properties of an associated Ruelle-Perron-Frobenius operator. For Gaussian models on Erdos-Renyi graphs, numerical computation points to a spectral gap remaining in the large-size limit, implying exceptionally good scalability. In a model where the underlying network also fluctuates ("dynamic network"), averaging is more effective than in the dynamic data case. Altogether, this implies very good performance of these methods in very large systems, and opens a new field of statistical physics of large (and dynamic) information systems.Comment: 5 pages, 7 figure

    Quasiparticle relaxation rate and shear viscosity of superfluid 3He-A_1 at low temperatures

    Full text link
    Quasiparticle relaxation rate,τp1\tau_{p}^{-1}, and the shear viscosity tensor of the A_1-phase of superfluid 3He are calculated at low temperatures and melting pressure, by using Boltzmann equation approach in momentum space. The collision integral is written in terms of inscattering and outscattering collision integrals. The interaction between normal and Bogoliubov quasiparticles is considered in calculating transition probabilities in the binary, decay and coalescence processes. We obtain that both τp1\tau_{p\uparrow}^{-1} and τp1\tau_{p\downarrow}^{-1} are proportional to T2T^2 >. The shear viscosities ηxy\eta_{xy}, ηxz\eta_{xz} and ηzz\eta_{zz} are proportional to (T/Tc)2(T/T_c)^{-2}. The constant of proportionality of the shear viscosity tensor is in nearly good agreement with the experimental results of Roobol et al., and our exact theoretical calculation.Comment: 8 pages, some typos were correcte

    Cardiovascular collapse caused by carbon dioxide insufflation during one-lung anaesthesia for thoracoscopic dorsal sympathectomy

    Get PDF
    Publisher's copy made available with the permission of the publisherCarbon dioxide insufflation into the pleural space during one-lung anaesthesia for thoracoscopic surgery is used in some centres to improve surgical access, even though this practice has been associated with well-described cardiovascular compromise. The present report is of a 35-year-old woman undergoing thoracoscopic left dorsal sympathectomy for hyperhidrosis. During one-lung anaesthesia the insufflation of carbon dioxide into the non-ventilated hemithorax for approximately 60 seconds, using a pressure-limited gas inflow, was accompanied by profound bradycardia and hypotension that resolved promptly with the release of the gas. Possible mechanisms for the cardiovascular collapse are discussed, and the role of carbon dioxide insufflation as a means of expediting lung collapse for procedures performed using single-lung ventilation is questioned.RJD Harris, G Benveniste, J Pfitznerhttp://www.aaic.net.au/Article.asp?D=200119

    Shear viscosity of the A_1-phase of superfluid 3He

    Full text link
    The scattering processes between the quasiparticles in spin- up superfluid with the quasiparticles in spin-down normal fluid are added to the other relevant scattering processes in the Boltzmann collision terms. The Boltzmann equation has been solved exactly for temperatures just below T_c_1. The shear viscosity component of the A_1- phase drops as C_1(1-T/T_c_1)^(1/2). The numerical factor C_1 is in fairly good agreement with the experiments

    Effects of radiative heat transfer on the structure of turbulent supersonic channel flow

    Get PDF
    International audienceThe interaction between turbulence in a minimal supersonic channel and radiative heat transfer is studied using large-eddy simulation. The working fluid is pure water vapour with temperature-dependent specific heats and molecular transport coefficients. Its line spectra properties are represented with a statistical narrow-band correlated-k model. A grey gas model is also tested. The parallel no-slip channel walls are treated as black surfaces concerning thermal radiation and are kept at a constant temperature of 1000 K. Simulations have been performed for different optical thicknesses (based on the Planck mean absorption coefficient) and different Mach numbers. Results for the mean flow variables, Reynolds stresses and certain terms of their transport equations indicate that thermal radiation effects counteract compressibility (Mach number) effects. An analysis of the total energy balance reveals the importance of radiative heat transfer, compared to the turbulent and mean molecular heat transport

    Universal behavior of CePd1xRhx\rm CePd_{1-x}Rh_x Ferromagnet at Quantum Critical Point

    Full text link
    The heavy-fermion metal CePd1xRhx\rm CePd_{1-x}Rh_x can be tuned from ferromagnetism at x=0x=0 to non-magnetic state at some critical concentration xcx_c. The non-Fermi liquid behavior (NFL) at xxcx\simeq x_c is recognized by power low dependence of the specific heat C(T)C(T) given by the electronic contribution, magnetic susceptibility χ(T)\chi(T) and volume expansion coefficient α(T)\alpha(T) at low temperatures: C/Tχ(T)α(T)/T1/TC/T\propto\chi(T)\propto\alpha(T)/T\propto1/\sqrt{T}. We also demonstrate that the behavior of normalized effective mass MNM^*_N observed in CePd1xRhx\rm CePd_{1-x}Rh_x at x0.8x\simeq 0.8 agrees with that of MNM^*_N observed in paramagnetic CeRu2Si2\rm CeRu_2Si_2 and conclude that these alloys exhibit the universal NFL thermodynamic behavior at their quantum critical points. We show that the NFL behavior of CePd1xRhx\rm CePd_{1-x}Rh_x can be accounted for within frameworks of quasiparticle picture and fermion condensation quantum phase transition, while this alloy exhibits a universal thermodynamic NFL behavior which is independent of the characteristic features of the given alloy such as its lattice structure, magnetic ground state, dimension etc.Comment: 5 pages, 3 figure

    On peak phenomena for non-commutative HH^\infty

    Full text link
    A non-commutative extension of Amar and Lederer's peak set result is given. As its simple applications it is shown that any non-commutative HH^\infty-algebra H(M,τ)H^\infty(M,\tau) has unique predual,and moreover some restriction in some of the results of Blecher and Labuschagne are removed, making them hold in full generality.Comment: final version (the presentation of some part is revised and one reference added

    Second wind of the Dulong-Petit Law at a quantum critical point

    Full text link
    Renewed interest in 3He physics has been stimulated by experimental observation of non-Fermi-liquid behavior of dense 3He films at low temperatures. Abnormal behavior of the specific heat C(T) of two-dimensional liquid 3He is demonstrated in the occurrence of a T-independent term in C(T). To uncover the origin of this phenomenon, we have considered the group velocity of transverse zero sound propagating in a strongly correlated Fermi liquid. For the first time, it is shown that if two-dimensional liquid 3He is located in the vicinity of the quantum critical point associated with a divergent quasiparticle effective mass, the group velocity depends strongly on temperature and vanishes as T is lowered toward zero. The predicted vigorous dependence of the group velocity can be detected in experimental measurements on liquid 3He films. We have demonstrated that the contribution to the specific heat coming from the boson part of the free energy due to the transverse zero-sound mode follows the Dulong-Petit Law. In the case of two-dimensional liquid 3He, the specific heat becomes independent of temperature at some characteristic temperature of a few mK.Comment: 5 pages, 1 figur

    Universal Behavior of Heavy-Fermion Metals Near a Quantum Critical Point

    Full text link
    The behavior of the electronic system of heavy fermion metals is considered. We show that there exist at least two main types of the behavior when the system is nearby a quantum critical point which can be identified as the fermion condensation quantum phase transition (FCQPT). We show that the first type is represented by the behavior of a highly correlated Fermi-liquid, while the second type is depicted by the behavior of a strongly correlated Fermi-liquid. If the system approaches FCQPT from the disordered phase, it can be viewed as a highly correlated Fermi-liquid which at low temperatures exhibits the behavior of Landau Fermi liquid (LFL). At higher temperatures TT, it demonstrates the non-Fermi liquid (NFL) behavior which can be converted into the LFL behavior by the application of magnetic fields BB. If the system has undergone FCQPT, it can be considered as a strongly correlated Fermi-liquid which demonstrates the NFL behavior even at low temperatures. It can be turned into LFL by applying magnetic fields BB. We show that the effective mass MM^* diverges at the very point that the N\'eel temperature goes to zero. The BTB-T phase diagrams of both liquids are studied. We demonstrate that these BTB-T phase diagrams have a strong impact on the main properties of heavy-fermion metals such as the magnetoresistance, resistivity, specific heat, magnetization, volume thermal expansion, etc.Comment: Revtex, 11 pages, revised and accepted by JETP Let

    Energy scales and the non-Fermi liquid behavior in YbRh2Si2

    Full text link
    Multiple energy scales are detected in measurements of the thermodynamic and transport properties in heavy fermion metals. We demonstrate that the experimental data on the energy scales can be well described by the scaling behavior of the effective mass at the fermion condensation quantum phase transition, and show that the dependence of the effective mass on temperature and applied magnetic fields gives rise to the non-Fermi liquid behavior. Our analysis is placed in the context of recent salient experimental results. Our calculations of the non-Fermi liquid behavior, of the scales and thermodynamic and transport properties are in good agreement with the heat capacity, magnetization, longitudinal magnetoresistance and magnetic entropy obtained in remarkable measurements on the heavy fermion metal YbRh2Si2.Comment: 8 pages, 8 figure
    corecore